This volume presents findings of three recent studies of lithic artifacts from diverse regions of California. Highlighting the behavioral implications of research for the specific projects and the rethinking attention directed toward analysis of such materials in other contexts. The stated intent of the work is to provide a comprehensive account of the archaeological record, both directly and indirectly, while encouraging analysis of lithic raw materials for developing a greater understanding of prehistoric lifeways.

The first study by John W. Rick and Thomas L. Jackson presents results of analysis of a cache of obsidian bifaces known as the Great Blazes Cache, recovered from an Inland Empire site in California. This study uses a statistical approach to detail discussion of both artifact and spatial attributes of the 69 specimens recovered. These data then form the foundation for interpretation of the likely sequence of events in procurement, production, transport, and discard of the bifaces, representing a very specific activity and somewhat distinct archaeological manifestations of behavior.

Jeanne A. Arnold's study of the prehistoric production of chert bifaces in the vicinity of Vandenberg Air Force Base just north of Santa Barbara provides an interesting discussion in which she considers raw material distribution, acquisition, manufacturing, and use. Bifacial pebbles, drills, knives, delaminates, and cores are all considered in testing several hypotheses regarding the manufacturing activities likely to be evident at various types of sites.

Finally, Douglas B. Bamforth presents data from various harpoon sockets in the Russian River and the Mattole region of northwest California, exploring the potential effects of raw material properties such as texture and their role in shaping quality on prehistoric use of harpoons. As such, this study represents fundamental research that is critical for insightful interpretations of use. Relying on statistical analysis of nodules size, raw material factors, blade traits, and reconstructed sequences based on data from bothflake and core analyses, the authors conclude that understanding and summarizing these trends is generally represented. Additional data suggest that subtle differences in blade quality, including apparent intensity of production, likely reflect regional patterns of raw material availability.

Although all three papers in this volume rely on statistics to discern patterns and elucidate behavior, the editor has provided appendices based on detailed lithic artifacts. The consideration of raw-material attributes as well as artifact characteristics for each paper provides data that are often complementary, and discussions are both thought-provoking. As such, the volume succeeds in challenging researchers to broaden perspectives on lithic analysis.

Reviewed by Robert H. Tycko, Harvard University.

This volume reports on four British collections of metal artifacts from North America acquired through extensive European contact. Since extractive metalworking was not in use in the British colonies, the artifacts authors focus on identifying artifacts made from native copper or meteoric iron.

This volume presents findings of three recent studies of lithic artifacts from diverse regions of California. Highlighting the behavioral implications of research for the specific projects and the rethinking attention directed toward analysis of such materials in other contexts. The stated intent of the work is to provide a comprehensive account of the archaeological record, both directly and indirectly, while encouraging analysis of lithic raw materials for developing a greater understanding of prehistoric lifeways.

The first study by John W. Rick and Thomas L. Jackson presents results of analysis of a cache of obsidian bifaces known as the Great Blazes Cache, recovered from an Inland Empire site in California. This study uses a statistical approach to detail discussion of both artifact and spatial attributes of the 69 specimens recovered. These data then form the foundation for interpretation of the likely sequence of events in procurement, production, transport, and discard of the bifaces, representing a very specific activity and somewhat distinct archaeological manifestations of behavior.

Jeanne A. Arnold's study of the prehistoric production of chert bifaces in the vicinity of Vandenberg Air Force Base just north of Santa Barbara provides an interesting discussion in which she considers raw material distribution, acquisition, manufacturing, and use. Bifacial pebbles, drills, knives, delaminates, and cores are all considered in testing several hypotheses regarding the manufacturing activities likely to be evident at various types of sites.

Finally, Douglas B. Bamforth presents data from various harpoon sockets in the Russian River and the Mattole region of northwest California, exploring the potential effects of raw material properties such as texture and their role in shaping quality on prehistoric use of harpoons. As such, this study represents fundamental research that is critical for insightful interpretations of use. Relying on statistical analysis of nodules size, raw material factors, blade traits, and reconstructed sequences based on data from bothflake and core analyses, the authors conclude that understanding and summarizing these trends is generally represented. Additional data suggest that subtle differences in blade quality, including apparent intensity of production, likely reflect regional patterns of raw material availability.

Although all three papers in this volume rely on statistics to discern patterns and elucidate behavior, the editor has provided appendices based on detailed lithic artifacts. The consideration of raw-material attributes as well as artifact characteristics for each paper provides data that are often complementary, and discussions are both thought-provoking. As such, the volume succeeds in challenging researchers to broaden perspectives on lithic analysis.

Reviewed by Robert H. Tycko, Harvard University.

This volume reports on four British collections of metal artifacts from North America acquired through extensive European contact. Since extractive metalworking was not in use in the British colonies, the artifacts authors focus on identifying artifacts made from native copper or meteoric iron.

This volume presents findings of three recent studies of lithic artifacts from diverse regions of California. Highlighting the behavioral implications of research for the specific projects and the rethinking attention directed toward analysis of such materials in other contexts. The stated intent of the work is to provide a comprehensive account of the archaeological record, both directly and indirectly, while encouraging analysis of lithic raw materials for developing a greater understanding of prehistoric lifeways.

The first study by John W. Rick and Thomas L. Jackson presents results of analysis of a cache of obsidian bifaces known as the Great Blazes Cache, recovered from an Inland Empire site in California. This study uses a statistical approach to detail discussion of both artifact and spatial attributes of the 69 specimens recovered. These data then form the foundation for interpretation of the likely sequence of events in procurement, production, transport, and discard of the bifaces, representing a very specific activity and somewhat distinct archaeological manifestations of behavior.

Jeanne A. Arnold's study of the prehistoric production of chert bifaces in the vicinity of Vandenberg Air Force Base just north of Santa Barbara provides an interesting discussion in which she considers raw material distribution, acquisition, manufacturing, and use. Bifacial pebbles, drills, knives, delaminates, and cores are all considered in testing several hypotheses regarding the manufacturing activities likely to be evident at various types of sites.

Finally, Douglas B. Bamforth presents data from various harpoon sockets in the Russian River and the Mattole region of northwest California, exploring the potential effects of raw material properties such as texture and their role in shaping quality on prehistoric use of harpoons. As such, this study represents fundamental research that is critical for insightful interpretations of use. Relying on statistical analysis of nodules size, raw material factors, blade traits, and reconstructed sequences based on data from bothflake and core analyses, the authors conclude that understanding and summarizing these trends is generally represented. Additional data suggest that subtle differences in blade quality, including apparent intensity of production, likely reflect regional patterns of raw material availability.

Although all three papers in this volume rely on statistics to discern patterns and elucidate behavior, the editor has provided appendices based on detailed lithic artifacts. The consideration of raw-material attributes as well as artifact characteristics for each paper provides data that are often complementary, and discussions are both thought-provoking. As such, the volume succeeds in challenging researchers to broaden perspectives on lithic analysis.

Reviewed by Robert H. Tycko, Harvard University.