Sound, The Auditory System, and Pitch Perception CHAPTER 11

Overview of Questions

- If a tree falls in the forest and no one is there to hear it, is there a sound?
- What is it that makes sounds high pitched or low pitched?
- How do sound vibrations inside the ear lead to the perception of different pitches?
- How are sounds represented in the auditory cortex?

SOUND: Two Definitions

- **<u>Physical Definition</u>**: Sound is pressure changes in the air or other medium.
- **<u>Perceptual Definition</u>**: Sound is the experience we have when we hear.

Sound Stimulus Produced by a Loudspeaker.

- Loud speakers produce sound by:
 - The diaphragm of the speaker moves out, pushing ______
 - The diaphragm also moves in, pulling the _____
 - The cycle of this process creates alternating high- and low-pressure regions that travel through the air

Sine Waves Can be Described by Their Amplitude and Frequency

- Pure Tone: created by a _____.
- **<u>Amplitude</u>**: difference in pressure between high and low peaks of wave

<u>Amplitude</u>: Perception of amplitude is ______

- Decibel (dB) is used as the measure of ______
- Number of Decibels (dB) = 20 logarithm (p/p₀)
 - **\square \mathbf{p}** = sound pressure of the stimulus
 - **\mathbf{p}_0** = standard sound pressure (usually set at 20 micropascals)
- <u>SPL</u> (______) indicates that we have used the standard pressure of 20 micropascals as p_0 in our formula.

Decibels are a ______of loudness and are related to

Loudness approximately ______ for every ______ increase in sound.

Sine Waves Can be Described by Their Amplitude and Frequency

- **Frequency** number of ______ within a given time period.
 - Measured in ______ _____ is 1 cycle per second
 - Perception of ______ is related to frequency
- People can hear frequencies between ______.

Pitch, Chroma, & Timbre

- <u>Tone height</u>: is the property of increasing pitch that accompanies increases in a tone's frequency. _____.
- <u>Tone Chroma</u>: Letters of notes on a musical scale (A, B, C, D, E, F, & G) repeat and notes with the same letter sound similar.
- **Octave:** Every time we pass the same letter on the spiral we have gone up an octave.
- Tones separated by octaves have ______ that are multiples of each other

Specifying the Frequencies of Complex Sound Stimuli

• Most environmental stimuli = complex sounds

Additive Synthesis for creating a complex tone

• The starting point for creating a complex tone by additive synthesis is a single

_____ (one frequency), which is called the _____

_____ of the complex tone.

Harmonics: are ______ that are added to the

fundamental frequency, each tone has a frequency that is a multiple of the fundamental.

- For a 440 Hz fundamental, the frequency of the 2nd tone/2nd harmonic is ______, and the 3rd tone/3rd harmonic is ______.
- The pattern of pressure changes for a complex musical tone consists of the sum of these components.

Complex Periodic Sounds – continued

Effect of missing fundamental frequency
 Removal of the first harmonic results in a sound with the same perceived pitch,

but with a different _____.

• This is called periodicity pitch.

SOUND AS A PERCEPTUAL RESPONSE: THE EXPERIENCE OF HEARING

- The range of hearing for humans is between ______.
- <u>Audibility Curve</u>: this indicates how sensitivity changes across the frequencies that we can hear by plotting the threshold for ______ versus ______.
- We are **most sensitive** at frequencies between _____, the range of frequencies that is most important for ______.
- The **area above the green curve** is called the ______ because we can hear tones that fall within this area.
- Threshold for feeling: As we approach this curve tones become ______
 and can cause ______ to the auditory system.

LOUDNESS

- The loudness of pure tones depends on both ______
- Equal Loudness Curves: These curves indicate the number of decibels that create the same perception of loudness at different frequencies (40 and 80 dB, SPL).
- At _____, all frequencies don't sound equally loud. Frequencies below 400 Hz (bass notes) and above 12,000 Hz (the treble notes) are inaudible at _____.

AUDITORY SYSTEM: STRUCTURE & FUNCTION 3 Basic Tasks Before We Can Hear

- Sound stimulus must be delivered to the receptors.
- <u>Transduction</u>:
- These electrical signals must be processed so they can indicate qualities of the sound such as pitch, loudness, timbre, and location.

THE OUTER EAR: Pinnae and Auditory Canal

- **Outer ear:** consists of the pinnae and auditory canal
 - Pinnae:
 - <u>Auditory Canal</u>: The canal and its ______ protects the delicate

_____ at the end of the canal and helps

keep this membrane and the structures in the middle ear at a relatively constant

- The resonant frequency of the canal amplifies frequencies between 1,000 and 5,000 Hz.
- **<u>Resonance</u>** occurs when sound waves that are reflected back from the closed end of the auditory canal interact with sound waves that are entering the auditory canal.
 - This interaction reinforces some of the sound's frequencies, the frequency reinforced the most is called the ______ of the canal.

THE MIDDLE EAR

- The **middle ear** is a 2 cubic centimeter cavity separating inner from outer ear.
- This cavity contains the _____, the **3 smallest bones in the body**.
 - Malleus moves due to the _____
 - Incus transmits vibrations of ______
 - <u>Stapes</u> transmit vibrations of incus to the ______

of the cochlea

Why are the ossicles necessary?

- Outer and middle ear are filled with ______
- Inner ear filled with ______ that is much denser than air
- Pressure changes in air transmit poorly into the denser medium
- Ossicles act to ______ for better transmission to the fluid

THE INNER EAR: COCHLEA

- **Cochlea**: is the main structure of the inner ear (35 mm long).
- The liquid of the Cochlea is set into vibration by the movement of the ______
 against the ______.
- <u>Cochlear Partition</u>: extends almost the entire length of the cochlea separating the scala vestibuli and the scala tympani.

Inner Ear: Organ of Corti

- Contains the receptors, called ______
- It sits on top of the basilar membrane
- It is covered by the tectorial membrane
- Hair Cells: the _____.

• Transduction takes place by:

- Inner hair cells: The ______ generates the electrical signal that is transmitted to fibers in the <u>auditory</u> <u>nerve</u>.
- Cilia bend in response to movement of organ of Corti and the tectorial membrane.
- When the _____ bend in one direction the cell _____
 and when it bends in the other direction the hair cells _____.
- Each time the cell depolarizes it ______, and each time it hyperpolarizes ______.

FREQUENCY ANALYSIS IN THE COCHLEA AND AUDITORY NERVE 2 Possible Ways Neurons Might Signal Frequency			
• By	are firing ()		
• By	these fibers are firing - the		
FREQUENCY ANALYSIS IN THE COCHLEA AND AUDITORY NERVE			
Bék	ésys' Place Theory of Hearing: the frequency of a sound is indicated by the		
plac	e along the at which nerve firing is highest.		
 Békésy observed the basilar membrane reaction to different frequencies by: boring a hole in the ear of a 			
	Building a of the cochlea using the physical		
	properties of the basilar membrane		
Békésys' Place Theory of Hearing			
 The _ 	of the basilar membrane (by the stapes) is 3 to 4 times		
than its apex and the base is 100 times			
than t	ne apex.		
 This knowledge led to models of the cochlea that revealed that pressure changes in the cochlea cause the basilar membrane to vibrate in a traveling 			
• Envelope of the traveling wave			
—	Indicates the point of maximum displacement of the		
-	Hair cells at this point are stimulated the most strongly leading to the nerve fibers firing the most strongly at this location		
—	Position of the peak is a function of		
Physiological Evidence for Place Coding			
Tonotopic Maps on the Cochlea: a map of frequencies along the length of the cochlea that was developed by measuring the electrical response of the cochlea to different frequencies.			

The apex of cochlea responds best to	_ and the
base responds best to	

Physiological Evidence for Place Coding

- <u>Hair Cell and Auditory Nerve Fiber Firing</u>: microelectrode recording from individual hair cells and auditory nerve fibers.
- Measuring the level in dB SPL necessary to elicit a small response at each frequency yields a **frequency tuning curve**.
- **Characteristic Frequency**: the frequency to which the hair cell is most sensitive.
- **Psychophysical tuning curves**, which are determined by measuring perception of different frequencies, look very similar to the neural curves obtained from measuring hair cells and auditory fibers.

Basilar Membrane's Response to Complex Tones

- Each component of a **complex tone** activates a different area of the basilar membrane.
- The auditory system performs a type of ______ on complex tones breaking the complex tone into its harmonics and responding to each harmonic.
 - Thus the cochlea is called a ______

Updating Békésy's Place Theory

- Békésy used basilar membranes ______ and his results showed no difference in response for ______ that people can distinguish.
- New research with live membranes shows that the entire _______
 respond to sound by slight tilting and a change in length.
 - For this reason these cells are called the ______.

Signaling Frequency by the Timing of Nerve Firing

Phase locking

- Nerve fibers fire in bursts
- Firing bursts happen at or near the peak of the sine-wave stimulus
- □ Thus, they are "locked in phase" with the wave
- Groups of fibers fire with periods of silent intervals creating ______
- Information for frequency is then transmitted through a series of structures to the cortex, resulting in our perception of sound.

Frequency Analysis in the Cortex

- Much of the timing information provided by the phase-locking is lost by the time the signal reaches the cortex.
 - This is because while the nerve fibers phase-lock to frequencies up to about , neurons in the cortex phase-lock only up to about

Place and Temporal Coding for Pitch

- Place coding is effective for the ______. ٠
- Temporal coding with phase locking is effective up to _____. •

Pathway from the Cochlea to the Cortex **The Auditory Pathways**

- The auditory nerve carries the signals generated by the inner hair cells away from the cochlea and toward the auditory receiving area in the cortex (A1).
- SONIC MG: SON = _____ IC = _____ MG =

Auditory Areas in the Cortex

- Hierarchical processing occurs in the cortex
- Neural signals travel through the core, then belt, followed by the parabelt area.
- Simple sounds cause activation in the _____.
- Belt and parabelt areas are activated in response to more complex stimuli made up of

What and Where Streams for Hearing

- _____, starts in the anterior portion of the core and • *What.* or belt and extends to the prefrontal cortex.
- It is responsible for ______ , starts in the posterior core and belt and • Where, or
- extends to the parietal and prefrontal cortices. It is responsible for _____
- Evidence from neural recordings, brain damage, and brain scanning support these findings.

Hearing Loss and Cochlear Implants

• These will be covered during the presentations and will not be on your exams.