Christine L. Ruva, Ph.D.

INTRODUCTION TO THE PHYSIOLOGY OF PERCEPTION Chapter 2

RECEPTORS & NEURAL PROCESSING

• Theme of Chapter: "We do not just perceive what is out there. We perceive what is out there as filtered through the properties of our visual system."

OVERVIEW OF QUESTIONS

- How are physiological processes involved in perception?
- How can electrical signals in the nervous system represent objects in the environment?

BASIC BRAIN STRUCTURE

- The brain has *modular organization*
 - The sensory modalities have *primary receiving areas*
 - Vision occipital lobe
 - Audition temporal lobe
 - Tactile senses parietal lobe
 - Frontal lobe coordinates information received from two or more senses

STRUCTURE & FUNCTION OF NEURONS

- <u>Dendrites:</u> from neighboring neurons and from environmental stimuli.
- <u>Axon:</u> extends from body and ______ to other neurons.
- **Synapses:** structure mediating chemical or electrical communication between neurons.
- <u>Terminal Buttons or Synaptic Vesicles</u>: small knobs at the end of the axonal branches that
- <u>Neurotransmitters</u>: chemical transmission of information released from neuron.
- <u>Myelin</u>: fatty protein insulation surrounding an axon that improves the ______ of action potentials.
 - Myelination of neurons is not complete until?
 - Nodes of Ranvier:
 - Multiple Sclerosis:

STRUCTURE & FUNCTION OF NEURONS (continued)

- <u>Nerves:</u> are made up of many ______ (axons). These axons are called *nerve fibers*.
- <u>**Purpose**</u> of a neuron is to transmit information to other neurons.
- <u>**Receptors**</u> specialized neurons that respond to specific kinds of energy.
- Neurons come in different shape and sizes depending on **location** and **function** in the NS.

Recording Neural Signals

- Microelectrodes are used to record from single neurons.
 - Recording electrode is inside the nerve fiber.
 - Reference electrode is outside the fiber.
 - Difference in charge between them is **-70 mV** when the cell is at rest.
 - This negative charge of the neuron relative to its surroundings is the **resting potential** (**polarized**).

ACTION POTENTIAL OF NEURONS

- Neurons are bathed in liquid. Thus, the neural impulse is a "wet" electrical signal.
- **<u>Ions:</u>** small electrically charged particles. The 2 types of ions (positive and negatively charged) resemble the 2 poles on a battery.
 - \circ Sodium ions (Na⁺) positive charge
 - Chlorine ions (CL⁻) negative charge
 - Potassium ions (K^+) positive charge
- <u>Membranes have selective permeability</u>
 - The **<u>permeability</u>** of the membrane changes as a result of action potentials allowing sodium and potassium to cross the membrane.
- <u>Action Potential (Nerve Impulse)</u>: this is a rapid increase in positive charge (depolarization) that is caused by changes in the **membrane's permeability**.
 - **Na+** flows ______ the fiber making the neuron more ______ (rising phase).
 - **K**+ flows ______ of the fiber making the neuron more ______ (downward

phase) bringing the charge back to resting level.

<u>Sodium-Potassium Pump:</u> continuously pumps sodium to the ______ of the

axon and potassium to the _____, thus maintaining sodium and potassium

at their ______.

Basic Properties of Action Potentials

- **propagated response :** the action potential remains the ______ as it travels down the axon no matter how far it travels.
- Changing the intensity of a stimulus does not affect the size of the action potential, but does effect the _____
- **<u>Refractory Period</u>**: recovery period after action potential which lasts approximately 1 millisecond (max rate of firing = 500-800 impulses per second).
- <u>Spontaneous Activity</u>: many axons fire without any _____.

Chemical & Electrical Events at the Synapse

- The action potential does **NOT** cross the synapse. It triggers the release of neurotransmitters.
 - Presynaptic neuron
 - Postsynaptic neuron
- Lock and Key System:

Types of Neurotransmitters

- A neuron's charge is polarized when at **rest** because the solution inside neuron is more negative than solution on the outside.
- Excitatory transmitters _____
 - Neuron becomes more ______
 - o ______ the likelihood of an action potential
- Inhibitory transmitters _____
 - Neuron becomes more ______
 - _____ the likelihood of an action potential

NEURAL PROCESSING BY EXCITATION & INHIBITION

- <u>Neural Circuits</u> are groups of neurons connected by excitatory and inhibitory synapses.
- A <u>linear circuit</u> has ______ convergence and only excitatory inputs.
 - Input into each receptor has ______effect on the output of neighboring circuits.
 - Each circuit can only indicate single spot of stimulation.
 - Firing receptor B provides no information on length of line.

NEURAL CIRCUITS – CONTINUED

- **Convergent circuit** with only **excitatory** connections.
 - Input from each receptor ______ into the next neuron in the circuit.
 - Output from convergent system varies based on input.
- Convergent circuit with excitatory and inhibitory connections:
 - o Inputs from receptors summate to determine output of circuit
 - Summation of inputs result in:
 - for single inputs & long stimuli

_____ for medium length stimulus (size info)

RECEPTIVE FIELDS

- <u>**Receptive Fields**</u>: the area of the retina that, when stimulated, influences the firing rate of ganglion cells.
- Receptive fields are determined by monitoring single cell responses.
- Stimulus is presented to retina and response of cell is measured by an electrode.
- Both excitatory areas and inhibitory areas make up the neuron's receptive field.
 - Excitatory or On response –
- <u>Center-surround receptive fields</u> are arranged with a center area that responds one way and a surround area that acts another.
 - Excitatory-center-Inhibitory surround
 - Inhibitory-center-Excitatory surround

Center-Surround Antagonism

- Output of center-surround receptive field changes depending on area stimulated:
 - Highest response when ______ is stimulated
 - Lowest response when ______ is stimulated
 - Intermediate responses when ______ are stimulated

Sensory Code: Representation of Environment

- Sensory code representation of perceived objects through neural firing
 - Specificity coding specific neurons responding to specific stimuli
- Leads to the ______ hypothesis
- Recent research shows cells in the ______ that respond to concepts such as Halle Berry.

Sensory Code: Representation of Environment – continued

• <u>Problems with specificity coding</u>:

- o ______ to assign specific neurons
- Most neurons respond to ______.

Distributed coding - _____

• Large number of stimuli can be coded by a few neurons.

Mind-body Problem

- How do physiological processes become transformed into perceptual experience?
 - Easy problem of consciousness
 - Neural correlate of consciousness (NCC) how physiological responses correlate with experience
 - Hard problem of consciousness
 - How do physiological responses *cause* experience?

FEATURE DETECTORS

- Some neurons in the visual cortex respond only to certain types of visual information.
 - For example, a vertical line.
- These cells are called feature detectors
 - Simple cortical cell
 - Complex cortical cell
 - End-stopped cortical cell
- These are measured in a similar way as visual fields.
 - <u>Feature Detectors</u> are determined by monitoring single cell responses.
 - Stimulus is presented to retina and response of cell is measured by an electrode.

TO WHAT EXTENT DO WE LEARN TO PERCEIVE?

- <u>Adults who were born blind</u>, but gained sight later in life (Gregory, 1978; von Senden, 1932).
 - **Example: Surgery involved transplanting stem cells** onto the surface of the eye to replace the scar tissue.
 - Michael May, age 46, was blind for 43 years lost his vision at age 3 ¹/₂ years) and now 3 years after surgery his right eye functions perfectly, but unless his brain catches up there is still a lot he cannot see.
 - Sept 2003 Nature Neuroscience
 - Similar experiments were conducted with cats (Weisel, 1982).

Selective Rearing Studies

- <u>Selective Rearing Studies</u>: Animals reared in specific environment
 - o Limits type of stimuli present
- Blakemore & Cooper, 1970: Selective Rearing Study
 - Kittens were reared in the dark except for a period each day when they were exposed to lines of one orientation (horizontal or vertical).
 - Kittens exposed to horizontal lines had few, if any, cells that maximally responded to orientations other than horizontal.
 - Cells that were not stimulated became ______.
 - Their eyes had not degenerated and their retinas still relayed signals to their visual cortex, but lacking stimulation, the cortical cells had not developed normal connections. Thus, the animals remained

Visual Development

• Severe congenital astigmatism

creates a visual environment similar to that of the ______.

o cornea is distorted, causing the image to be out of focus in _____.

- o permanent neural changes occur vision is impaired in one orientation.
- must be corrected before age ______
- <u>Strabismus</u> the eyes are _____, resulting in excessive

disparity between the two eyes' input to the brain.

- o one eye's input is _____
- o loss of binocularly driven cortical cells
- o ______ impaired: critical period for binocular vision
- o after age ______ little development occurs