JOURNAL OF
ROMAN
ARCHAEOLOGY

SUPPLEMENTARY SERIES NUMBER 39

Editorial committee:
Carol C. Mattusch, George Mason University
Amy Brauer, Arthur M. Sackler Museum, Harvard University Art Museums
Sandra E. Knudsen, Toledo Museum of Art

This volume is published with the support of Shelby White and Leon Levy

ISBN 1-887829-97-0
ISSN 1063-4304 (for the supplementary series)

Copyright © 2002 The individual authors. Printed by Thomson-Shore, Dexter, Michigan.
This and other supplements to the Journal of Roman Archaeology® may be ordered from:
JRA®, 95 Peleg Road, Portsmouth, Rhode Island 02871, U.S.A.
telephone (USA code+) 401 683 1955
telefax (USA code+) 401 683 1975 (fax only)
e-mail: jra@JournalofRomanArch.com
or via our Web site at: www.JournalofRomanArch.com

AN INTERNATIONAL JOURNAL
FROM THE PARTS
TO THE WHOLE

VOLUME 2

Acta of the 13th International Bronze Congress,
held at Cambridge, Massachusetts,
May 28 - June 1, 1996

edited by
Carol C. Mattusch, Amy Brauer,
and Sandra E. Knudsen

Portsmouth, Rhode Island
2002
Iberian bronze figurines:
technological and stylistic analysis

Robert H. Tykot, Lourdes Prados Torreira and Miriam S. Balmuth

Thousands of votive bronze figurines are known from just three sanctuary sites in the eastern Andalusia region of Spain, where they were clearly an important aspect of Iberian religious practices. Several thousand have been found at the Collado de los Jardines (Despeñaperros, Jaen), the best known of the sanctuaries; another 2,000 at Castellar de Santisteban, c. 35 km distant; and several hundred more at Nuestra Señora de Luz (Murcia). Individual figurines have been found at some 30 other sites in Spain.1

We report here on a collection of 20 figurines that belongs to the Harvard University Art Museums but is on permanent loan to the Peabody Museum of Archaeology and Ethnology, Harvard University.2 This collection was donated to Harvard in 1932 by the Spanish Republic, along with some ceramics and other materials.3 Both the historical provenance of the collection and the typological characteristics of the figurines leave little doubt that they come from the Collado de Los Jardines sanctuary, where many similar figurines have been found.4

Unfortunately, their chronology is based primarily on stylistic evidence, since the excavations by Calvo y Cabré were done more than 75 years ago, and many of the other figurines come from clandestine activities. Some of the more detailed figurines are thought to be close to Phoenician models of about 600 B.C., while more schematic types may be later, possibly of Roman age.5 More recently, the Iberian figurines have been extensively studied by Prados Torreira, who has catalogued nearly 2000 examples in the Museo Arqueológico Nacional in Madrid.6 We estimate that most of the figurines in the Harvard collection date between the end of the 5th and the 2nd c. B.C.

The figurines in the Harvard collection are a heterogeneous group, both stylistically and compositionally, perhaps as a result of chronological differences (figs. 1-2). Several of the figurines are quite simple and schematic, with little detail executed before or after casting. Only one has breasts to indicate that it represents a female; she also wears a cape which covers her head and flows down below her waist (no. 130). Two are clearly males judging from the genitalia (nos. 135 and 113), while a third (no. 114) carries a dagger, as does one of the males (no. 113).

Half of the Harvard pieces may be described as offerers or supplicants, dedicated to an unknown divinity. Prados Torreira has interpreted this group, as well as the phallic males, as having fertility connotations. She also interprets the figurines as reflecting different social classes, in terms of both who they represent and who acquired and deposited them. Some of the figurines represent women wearing jewelry and expensive garments; the quality of the figurines themselves suggests that some were probably made by specialized artisans.7

1 R. J. Harrison, Spain at the dawn of history: Iberians, Phoenicians and Greeks (London 1988) 126-34.
3 This was in appreciation for the return of the sarcophagus of Alfonso, son of Count Pedro de Ansúrez de San Benito de Sahagún.
4 P. Paris, Essai sur l’art et l’industrie de l’Espagne primitive (Paris 1903-4); J. Calvo y Cabré, Excavaciones en la Cueva y Collado de los Jardines: Santa Elena (Memorias de la Junta Superior de Excavaciones y Antigüedades, Madrid 1919); F. Alvarez Ossorio, Catálogo de los esculturas de bronce ibéricos: Museo Arqueológico Nacional (Madrid 1941).
7 Prados Torreira considers the Harvard collection to represent the average class of figurines from the...
Fig. 1. Female figures. Iberian. Bronze. From left to right: inv. nos. 128, 129, 123, 127, 125, 124, 126, and 130. Cambridge, MA, Harvard University Art Museums. (Photo: H. Burger, courtesy Museum)

Fig. 2. Male figures. Iberian. Bronze, h. (of tallest) 10 cm. From left to right, top and then bottom row: inv. nos. 135, 113, 118, 121, 120, 122, 119, 136, 134, and 114. Cambridge, MA, Harvard University Art Museums. (Photo: H. Burger, courtesy Museum)
Chemical analysis

Iberian bronze figurines were cast using the lost-wax process in clay molds that were then broken open and discarded. Knowledge of the alloys provides information on the types of ores exploited, as well as on the technological nature of the production process itself. Issues such as the addition of lead to improve casting properties, the use of standardized recipes, and the recycling of scrap metal may then be considered.

A fine drill bit was used to remove approximately 10 mg of clean metal from the interior of one leg from each figurine, with minimal damage to the appearance of each piece. Samples were put into solution and analyzed for major and trace elements by inductively coupled plasma-mass spectrometry, a technique which is increasingly being applied to archaeological materials. ICP-MS has a number of distinct advantages over other analytical techniques, the most important for metal analyses being its simple requirements for preparing the samples, low cost, and the ability to produce isotope ratio data in addition to elemental composition. Although the size of the sample removed from each figurine is small (and metals are notoriously heterogeneous), these samples potentially yield a more representative compositional analysis than that obtained by the analysis of surface material alone (e.g., by X-ray fluorescence, PIXE, or SEM-based analyzers).

TABLE 1. CHEMICAL ANALYSES OF IBERIAN FIGURINES (tr = trace)

<table>
<thead>
<tr>
<th>Sample no./inv. no.</th>
<th>Cu</th>
<th>Sn</th>
<th>Pb</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Ag</th>
<th>As</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 33-67-40/113</td>
<td>80.45</td>
<td>6.97</td>
<td>10.66</td>
<td>1.31</td>
<td>0.60</td>
<td>0.13</td>
<td>0.06</td>
<td>0.14</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/114</td>
<td>83.40</td>
<td>10.54</td>
<td>4.69</td>
<td>1.37</td>
<td>tr</td>
<td>0.03</td>
<td>0.09</td>
<td>0.10</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/118</td>
<td>87.97</td>
<td>3.51</td>
<td>7.48</td>
<td>1.04</td>
<td>tr</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/120</td>
<td>94.74</td>
<td>2.62</td>
<td>1.43</td>
<td>1.11</td>
<td>tr</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/121</td>
<td>94.58</td>
<td>5.16</td>
<td>0.26</td>
<td>tr</td>
<td>tr</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/122</td>
<td>83.43</td>
<td>4.63</td>
<td>11.62</td>
<td>0.33</td>
<td>tr</td>
<td>0.06</td>
<td>0.04</td>
<td>0.20</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/123</td>
<td>82.90</td>
<td>5.68</td>
<td>10.57</td>
<td>0.84</td>
<td>tr</td>
<td>0.04</td>
<td>0.08</td>
<td>0.08</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/124</td>
<td>71.02</td>
<td>5.55</td>
<td>23.11</td>
<td>0.32</td>
<td>tr</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/125</td>
<td>95.10</td>
<td>2.14</td>
<td>3.49</td>
<td>tr</td>
<td>tr</td>
<td>0.03</td>
<td>0.05</td>
<td>0.01</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/126</td>
<td>92.54</td>
<td>2.81</td>
<td>4.29</td>
<td>0.36</td>
<td>tr</td>
<td>0.01</td>
<td>0.06</td>
<td>0.05</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/127</td>
<td>88.92</td>
<td>5.46</td>
<td>5.62</td>
<td>tr</td>
<td>tr</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/128</td>
<td>89.07</td>
<td>9.96</td>
<td>0.97</td>
<td>tr</td>
<td>tr</td>
<td>0.01</td>
<td>0.06</td>
<td>0.03</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/129</td>
<td>91.61</td>
<td>1.29</td>
<td>6.69</td>
<td>0.41</td>
<td>tr</td>
<td>0.02</td>
<td>0.05</td>
<td>0.09</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/130</td>
<td>89.91</td>
<td>5.06</td>
<td>4.65</td>
<td>0.39</td>
<td>tr</td>
<td>0.03</td>
<td>0.05</td>
<td>0.11</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/131</td>
<td>76.32</td>
<td>4.17</td>
<td>18.77</td>
<td>0.74</td>
<td>tr</td>
<td>0.03</td>
<td>0.09</td>
<td>0.10</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/132</td>
<td>80.31</td>
<td>5.01</td>
<td>13.84</td>
<td>0.85</td>
<td>tr</td>
<td>0.04</td>
<td>0.06</td>
<td>0.09</td>
<td>100.00</td>
</tr>
<tr>
<td>PM 33-67-40/136</td>
<td>89.85</td>
<td>6.93</td>
<td>2.85</td>
<td>0.37</td>
<td>tr</td>
<td>0.03</td>
<td>0.06</td>
<td>0.05</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Results were obtained for 17 of the Harvard figurines (Table 1). As a group, these Iberian figurines are extremely variable in their lead content: they average 7.7%, but range from 0.26% to 23.1%. Tin, which averages 5.1%, ranges from 1.3% to 10.5%. Several of the figurines have measurable quantities of zinc (average 0.72%), but never more than 1.4%. There does not appear to be any correlation between our analyses and the type or style of the figurines. For example, the most elaborate figurines (e.g., no. 128), whose casting might have been facilitated by the use of leaded bronze, are not among those with more than 10% lead (nos. 113, 122, 123, 124, 134, 135).

Collado de los Jardines sanctuary. Figurines of higher quality may be found in the Museo Arqueológico de Madrid and in the Museo Arqueológico de Barcelona.

Our results are largely consistent with those previously reported for figurines from sanctuary sites in Spain, and complement those available for Bronze Age Iberian metalwork. The extreme compositional variability present in the Harvard collection, and in other collections, implies that a standard recipe was not used in the production of Iberian votive bronze figurines, and that metal production in Iron Age Spain may have been a largely decentralized activity. This variability is also not easily explained by chronological changes in alloy composition, whether for technological, economic, or social reasons. Most likely, the variability present in these collections results from the widespread recycling of scrap metal containing copper, tin, and/or lead in differing proportions. This may have occurred for reasons of convenience, cost, or availability of alternative materials. Further analyses of Iberian bronzes from dated archaeological contexts may help resolve these issues and allow us to connect metallurgical production techniques to socioeconomic factors in prehistoric Iberian societies.

Department of Anthropology, University of South Florida, Tampa, FL 33630 (R.H.T.)
Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid (L.P.T.)
Department of Classics & Archaeology, Tufts University, Medford, MA 02155 (M.S.B.)

Prados Torreira 1992 (supra n.6) 151-56. XRF analyses of 54 figurines from the same site, Collados de los Jardines, average 9.4 ± 5.2% Sn, 9.7 ± 8.5% Pb, and 0.3 ± 0.3% Zn. Twenty figurines from Castellar de Santistebean average 7.0 ± 4.9% Sn, 13.7 ± 7.1% Pb, and 0.2 ± 0.3% Zn. Eight figurines from La Luz average 9.7 ± 7.4% Sn, 16.5 ± 7.6% Pb, and 0.3 ± 0.2% Zn.